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Three criteria are deduced for the prediction of grids, which allow for accurate direct 
numerical simulations of turbulent flows. These criteria are based on wavelength 
considerations, boundary layer thickness estimates, and on a simplified theoretical model to 
calculate the coefftcient of a verified subgrid-scale heat flux model. The criteria have been 
successfully tested by comparing the results of several three-dimensional and time-dependent 
numerical simulations for the Rayleigh-Benard convection of air in an infinite channel up to 
Ra = 381,225. Numerical results deduced from appropriate grids are in agreement with 
adequate experimental data. Numerical results deduced from insufficient grids show only 
weak deficiencies. The most sensitive data to restricted large wavelengths are the calculated 
Nusselt numbers and the flow regimes in the laminar-turbulent transition range; data sensitive 
to insufftcient vertical resolution near the walls are also the Nusselt numbers; and data 
sensitive to insufftcient horizontal resolution are the calculated Nusselt numbers and rms 
values of velocity and temperature fluctuations at large Rayleigh numbers. All three criteria 
use data specific to the type of flow only as input parameters. Therefore, these criteria may 
also be used for other types of flows. 

1. INTRODUCTION 

The investigation of Raleigh-Benard convection between two infinite horizontal 
plane walls has become an important tool in studying the transition to turbulence. 
This is due to the simplicity of the system and due to the discrete transitions in heat 
transfer, which so far have not been observed in other convection systems [ 11. 
Among the few known fully three-dimensional and time-dependent computer 
simulations only the work by Lipps [2] extends from the laminar to the slightly 
turbulent regime. The work of the author [3] extends into the fully turbulent regime. 

The accuracy of these direct numerical simulations should depend only on the 
finite difference scheme and on the grid parameters chosen. Despite applying well 
known and tested schemes and grids which should be appropriate for the transition 
range, Lipps states a strong influence of the chosen periodicity lengths or wavelengths 
on the calculated frequencies and heat transfer. The problem associated with high 
Rayleigh number simulations conducted by the author is the large number of 
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calculations needed to show the adequacy of the small scale resolution capabilities of 
the grids used. 

In this paper spatial resolution requirements for the selection of appropriate grids 
will be deduced from physical arguments. For accurate simulation, the length scales 
observed in turbulent convection require very large numbers of mesh cells, which are 
mostly beyond the capabilities of present computer systems. For efficient numerical 
simulation one is interested in finding grids recording only the most important scales 
but, nevertheless, producing accurate results. The criteria formulated will be applied 
to the numerical results of the author referred to above. New results from additional 
simulations with the TURBIT-3 computer code [4] will also be given. These show the 
method is well behaved even for grids not exactly meeting all criteria. A theoretical 
way of testing grids in advance of application is also shown. Thus, for further 
simulations there is nearly no need for any check of the adequacy of the resolution 
capabilities of the grids used. 

2. THE METHOD OF DIRECT NUMERICAL SIMULATION 

The basic equations are the conservation equations for mass, momentum, and heat. 
For the sake of simplicity, the validity of the Boussinesq approximation is assumed. 
Cartesian coordinates are used with X, and x2 horizontal and x3 directed upwards. 
For normalization we use the plate spacing D, the wall temperature differential AT,,,, 
the velocity u,, = dgm, the time scale t, = D/u,, and the pressure scale 
Po=P& where g = gravity, /3 = volume expansion coefficient, p = density. The 
resulting dimensionless numbers are the Reynolds number, Re, = u,D/u, the Prandtl 
number, Pr = v/a, and the Rayleigh number, Ra = g/Id r,,,@/(va), where 
v = kinematic viscosity and a = temperature conductivity. 

There are several ways to formally deduce a finite difference scheme for the basic 
equations. For a review of the methods which have become important for direct 
numerical simulation it is referred to the papers by Love [5] and Schumann et al. [6]. 
In the TURBIT-3 code, the box filtering method is applied in the special variant of 
Schumann [7]. Following the recent results by Antonopoulos-Domis [8], this method 
seems to have major advantages over the methods using nonlinear filters. 

The procedure starts with a formal integration of the basic equations over grid 
volumes v = Ax, Ax, Ax,. Application of the volume-averaging operator to partial 
derivatives of any quantity y directly produces a finite difference operator for surface 
averaged values, averaged over one surface ‘F = v/Ax, of a mesh cell 

1 - 
I 

aydv = 
V U axi A,,A:,Ax,~,,,~,,,,,,,~~~~~~~~~’ 

- 
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The operator splits the velocity and temperature fields into spatial averages, ‘Uj, 
“T, with typical wavelengths larger than L$, which are directly resolved by the grid, 
and into “subgrid scale” parts, U, = uj - J~j, T’ = T - “T, with wavelengths smaller 
than dxi, which are not spatially resolved by the grid. Application of this operator to 
the basic conservation equations provides the following finite difference formulae: 

ai ‘Ui = 0, i= 1,2,3, Pa) 

a 3-i. -g + sj 'iii jcj + sj J ‘++jj(&%) -c$~-&AY’%$,, (2b) 

These averaged equations are the exact results of formal volume averaging. The 
continuity equation is even numerically exact if a staggered grid is used. This requires 
a few additional linear average 7 in the convective terms in order to approximate 
variables between two nodes. Second-order approximations are introduced for the 
remaining derivatives. This holds true also for the explicit finite difference scheme, 
written here without space averaging bars where the superscript n refers to the time 
step, t” = n At: 

(u’;” - $‘)/(2At) = - cjj(fi;@ + dj &djui - jw)‘-’ 
0 

-& (UTref- “,), dij, 
0 

(T”+’ - T”-‘)/(2At) = - 6j(UjTj)” + Sj &iijT-jv 
n-1 

3 WI 
0 

6idip” = 6,q+y(2At), (3c) 

u; + ’ = zT; + ’ - (2At) dip”. W 

The pressure p” is determined from Poisson equation (3~) so that the new time 
level velocities ur+ ’ satisfy continuity equation (2a). Equation (3~) is solved by a fast 
Fourier transform. Equations (3a) and (3b) correspond to a leapfrog scheme starting 
with an Eulerian step and interrupted by an averaging step after every nL time steps 
(typically, nL = 40). For details of the complete scheme see, e.g., [3,4]. 

Equations (2a) to (2~) look like the Reynolds equations deduced by time 
averaging. In the Reynolds equations, models must be introduced for the unknown 
shear stresses which contain the total information on turbulence. The Daly model [9] 
is such a statistical model. It applies seven additional transport equations for the 
unknown turbulence quantities. 

Equations (2a)-(2c) are not averaged over time, but only over the mesh cell 
volumes. Therefore, the unknown terms jm and juj’ T’ contain only the small-scale 
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FIG. 1. Channel geometry and coordinate system. 

information on turbulence, which cannot be spatially resolved by the grid used. 
Larger turbulence elements are resolved by the grid and will be described by the 
numerical scheme. Here, we neglect the subgrid-scale terms 

j~=j~=o. (4) 

However, this requires grids resolving even the smallest influential scales of the flow. 
Further simplifications of Eqs. (l)-(4), which would contradict the three-dimensional 
and time-dependent nature of turbulence, are not allowed as they would force the 
model to produce results of purely mathematical interest [lo]. All models using a 
scheme for the complete basic equations and neglecting the subgrid-scale terms are 
called “direct numerical simulation models”. The Lipps model [2] and the TURBIT-3 
version used here belong to this class of models. 

The boundary conditions are chosen to record the classical Rayleigh-Benard 
problem in an infinite horizontal channel. Due to limited computer capabilities, we 
only handle a small control volume, V = X,X,D, for which we use periodicity 
boundary conditions in both horizontal directions with periodicity lengths X, and X, 
(Fig. 1). At both walls we assume no slip and apply linear finite difference approx- 
imations to the diffusive terms to calculate the wall shear stresses T,i and the wall 
heat fluxes, q,,,!. The wall conditions for the lower wall are, e.g., 

5 
1 ‘au, - 2 

w1=-- Re,z% Re, Ax, ‘%I, 
- 

1 3aT -2 
4 WI=-- Re,Pr ax,= Re, Pr dx, (“TI, - Tw,), (6) 

where ‘zZ1], and ‘?]r are the local and time-dependent values for the grid cells 
adjacent to the wall. The wall temperatures T,, are prescribed to be constant in time 
and space. 

3. SPATIAL RESOLUTION REQUIREMENTS 

Up to this point, not a single adjustable parameter appeared in the model. 
However, we made some important approximations of limited validity: the 
assumption of horizontal periodicity, the linear wall approximations in Eqs. (5) and 
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(6), and neglecting the subgrid-scale terms in Eqs. (2)-(6). Therefore, the next step 
must be the selection of grids, which are in accordance with the requirements arising 
from these approximations: 

(i) The periodicity lengths X, must be chosen large enough to record all 
relevant large-scale vortices. 

(ii) The vertical grid width distribution must be able to resolve the steep 
gradients in the velocity and temperature fields near the walls. 

(iii) The mean grid widths must be smaller than the smallest relevant 
turbulence elements. 

Quantifying these qualitative criteria can be a serious problem. Values of Xi can be 
chosen on the basis of some experimental information on the wavelength A, but no 
experience is available in direct simulation which would actually allow the selection 
of a special value. The values of Ax, could be chosen in the light of experience with 
statistical turbulence models. But due to local fluctuations of all quantities around 
their mean values, direct simulation can furnish much higher instantaneous values of 
gradients close to the wall. Values of the mean grid width could be chosen on the 
basis of the Kolmogorov length scale q, but grids determined in this way would 
involve enormous computing efforts and would not account for the very low 
significance of the subgrid-scale terms near the limit to total resolution. Coarser grids 
would only minimally detract from the accuracy of the results, but would 
considerably reduce the computing effort. In this section, quantitative requirements 
will be formulated for the criteria given above and will be applied to the grids used 
with TURBIT-3 for simulation of the Benard convection. In Section 4, we will 
investigate these requirements on the basis of several results of these numerical 
simulations. 

3.1. Case Spec~jkations 

Several simulations with different grids and different Rayleigh numbers have been 
performed for a Prandtl number of Pr = 0.71 (Table I). One set of simulations, Cases 
2-14, have been taken from [3]. For the two laminar cases with Ra = 4000 and 
7000, grids have been used with Nl = N2 = 16 nodes in both horizontal directions 
and N3 = 8 nodes in the vertical direction. The same grid has also been used for a 
turbulent flow with Ra = 87,300, i.e., Case 4. For the other cases, including the 
highest Rayleigh number of 381,225, nonequidistant vertical grid width distributions 
are used and the node number is increased by a factor of two in each case up to 
64 x 32 x 32 nodes. In the second set with the new simulations, Cases 15-18, grids 
have been used which record twice the (periodicity) lenghts of the former simulations 
in each horizontal direction. For this purpose the horizontal node numbers Nl and 
N2 of Cases 15-18 are twice those of Cases 2, 3, 6, and 12, leaving the other grid 
data unchanged. 

The number of time steps Nt necessary for the random initial data to reach fully 
developed flow is between one and five thousand. The Nt needed for Cases 13 and 14 
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TABLE I 

Case Specifications, Grid Parameters, and Simulation Times 

CPU time 

Case Ra Nl N2 N3 I ,,,ax Nt min IBM 

2 4000 16 16 8 71.5 1060 16 
3 7000 16 16 8 84.9 1060 16 

4 87,300 16 16 8 85.4 1060 16 
5 87,300 16 16 8 84.1 1200 17 
6 87,300 16 16 16 33.5 1880 55 

I 38 1,225 16 16 16 41.0 1320 39 
9 38 1,225 32 16 16 26.9 920 58 

12 381,225 32 32 16 100.7 3680 254 
13 381,225 32 32 32 42.7 5040 706 
14 381,225 64 32 32 32.7 3880 1087 

15 381,225 64 64 16 66.8 2640 696 
16 87,300 32 32 16 73.5 4160 268 
17 7000 32 32 8 262.1 3960 128 
18 4000 32 32 8 161.4 2600 84 

168 
168 

168 
168 
168 

168 
168 

3033 
3033 
3033 

3033 
3033 
3033 
3033 

Note. Cases 2-14 use periodicity lengths X, =X, = 2.8, Cases 15-18 use X, =X, = 5.6 

has been reduced considerably by increasing the channel mean turbulence energy in 
both first restart tiles after two hours of computing time [ 111. All simulation times, in 
addition to the startup time, include a certain time interval in which the flow 
statistically is a steady-state flow. This is necessary to analyze time averages from the 
time-dependent results. The computation times needed for these simulations extend 
between 16 min on the IBM 168 and 18 h on the IBM 3033 (the latter machine being 
about twice as fast). 

3.2. Selection of Periodicity Lengths 

The largest scales to be recorded by the control volume V may be measured by the 
wavelength J observed in turbulent convection experiments. The experimental results 
of Willis et al. [ 121 in the stability map by Clever and Busse [ 131 in Fig. 2 show 
decreasing wave numbers k or increasing wavelengths J for increasing Rayleigh 
numbers. Thus, V should grow with 1, and so should the computing effort. For the 
simulations at hand this effort was restricted by assuming that it should be sufficient 
to have only one wavelength within the control volume, i.e., 
X, = Nl dx, =X, = N2 Ax, = L. Two values have been selected. For the former set 
of simulations the smallest appropriate value was chosen, which is X,,, = 2.8 for the 
smallest Rayleigh number Ra = 4000, and was kept constant for Cases 2-14. For the 
new set of simulations the largest appropriate value was chosen which belongs to the 
largest Rayleigh number Ra = 381,225. Following the extrapolation curve for the 
wavelength by Daly [9], it was indicated to use Xi,, = 5.6 for Cases 15-18. 
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FIG. 2. Stability map for convection in air [ 131. The shaded region with d > 2.8 cannot be recorded 
by the grids chosen for Cases 2-14, and the region with i > 5.6 cannot be recorded by the grids of 
Cases 15-18. 

One consequence of applying such small periodicity lengths is that no flow regime 
can be calculated with 1 > Xi or k < 27r/Xi. Thus, the numerical results for cases with 
Ra > 4000 and Xi = 2.8 may be influenced by wavelengths which are too small. 
Another consequence is the restriction that in case of regular flow patterns only 
special wavelengths, such as 1 =X,, can be calculated for 1 around Xi if the axes of 
the vortex system run parallel to the X, axis, or 1 =X,/G if the vortex axes run 
diagonal through the grid, or I =X,/2 if there are two vortex pairs, etc. 

3.3. Selection of Vertical Grid Width Distributions 

Criterion (ii) requires an adequate vertical grid width distribution near the walls to 
justify the linear wall approximations for the diffusive terms in Eqs. (5) and (6). As is 
known from experiments, e.g., [ 141, the temperature gradients near the walls are very 
steep. This requires a very fine vertical resolution near the wall. Farther away from 
the wall, a sharp transition to the isothermal core is found in the mean temperature 
profile, and between both critical regions, many statistical turbulence data have sharp 
peaks. If it is the purpose of a simulation to study such data, very fine vertical 
resolution should also be used in these regions. 

Statistical methods usually use at least two or three nodes within the conductive 
sublayer 6 = l/(2 Nu), where Nu = Nusselt number, to calculate the wall fluxes. Two 
nodes are selected for laminar flow and three nodes for turbulent flow conditions to 
account for the greater local variations in the temperature field near the wall in 
turbulent flows. No additional requirements follow from the formulation of the wall 
shear stresses in Eq. (5) as we study the convection with a Prandtl number near 
unity. 
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TABLE II 

The Vertical Grid Widths dx,, near the Wall Required (dam,,,,,,,,) and Actually Used (Ax,,). 

Case Ra Nu Ax 3wmsx Ax,, 

2, 18 4000 1.97 0.1269 0.125 
3, 17 7000 2.31 0.1082 0.125 

4 87,300 4.70 0.0355 0.125 
5 87,300 4.70 0.0355 0.0625 

6, 16 87,300 4.70 0.0355 0.02 

7-12,15 381,225 7.12 0.0234 0.02 
13,14 381,225 7.12 0.0234 0.01 

Note. Nu was calculated by the correlation given in [ 15 j. 

To predict the maximum allowable grid widths Ax~,,,,,,~~., for the cases specified in 
Table I, the Nusselt number is calculated by the correlation given in [ 151 in accor- 
dance with the calculated Nusselt numbers discussed in Section 4. The results are 
shown in Table II together with the AXE, values actually used. The values used are 
below those required for all cases except for Cases 4 and 5. Full information on the 
nonequidistant vertical grid width distribution is given in [3] for Cases 5-12 and in 
[ 111 for Cases 13 and 14. 

3.4. Selection of Mean Grid Widths 

Criterion (iii) in general requires a mean grid width capable of resolving the 
smallest scales of turbulence to justify neglecting the subgrid-scale terms (Eq. (4)). It 
is known for any type of turbulent flow that the smallest turbulence elements obser- 
vable decrease in size with increasing turbulence level (see, e.g., [ 161). For Benard 
convection conditions, this has also been found in [ 141. In addition, Krishnamurti 
[ 171, e.g., determined decreasing periods of oscillation for increasing Rayleigh 
numbers, and Fitzjarrald [ 181 found an increasing importance of higher frequencies 
in the turbulent heat flux. This has also been predicted by the optimum theory [ 191. 
Thus, we must use decreasing mean grid widths for increasing Rayleigh numbers. 
This means that predictions are required for the grid widths necessary for efficient 
and accurate direct numerical simulation of turbulent convection. 

In many publications, e.g., in the recent one by Chapman 1201, the Kolmogorov 
length, ~7 = (v~/E)‘/~, where E is the dissipation of kinetic turbulence energy, has been 
used as a measure for the smallest relevant scales to estimate the magnitude of the 
node numbers necessary for turbulent shear flow simulation. The basis of this 
approach is the experience that the maximum in the dissipation spectrum 
s(k) = 2vk*E(k), where E(k) is the spectrum of the kinetic energy E = (u; ‘)/2, for 
several types of flows is at a wave number of about k zz 0.1/r] and that the energy and 
dissipation spectra sharply decrease in the wave number range 0.1/q < k < l/v [ 161. 
This has also been found in Benard convection experiments [ 141. The spectra of 
shear stresses E,(k), with i #j, are only associated with wave numbers k $ l/v, 
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because these spectra decrease much more steeply than the energy spectra with i =j 
[21]. Thus, neglecting the subgrid-scale terms in Eq. (4) requires grids which account 
for a maximum wave number of about l/q. 

Following Lilly [22], the maximum wave number to be recorded by the grid is 
k max = n/h, where h = (Ax, Ax, Ax,)“~ is the mean grid width. This wave number 
must be greater than l/q and greater than l/q,, where rlT = (u~/E)“~, which is due to 
the temperature field. This results in the following restrictions on mean grid widths: 

h < 7rrj = 7r(v3/&p4 for Pr<l, (7) 

h Q 7rqr = n(u3/&y4 for Pral. (8) 

The vertical dissipation profile is known from experiments [ 141 to be very flat with 
the exception of the regions near the walls. Therefore, here is the dissipation assumed 
to be constant and approximated by equalizing it to the production term due to 
buoyancy forces in the kinetic energy equation. With the normalization used here, 
Eqs. (7) and (8) are replaced by these requirements: 

758 Pri/* Ra-0.3205 9 

h < n (Ra d, NU)“4 c 4.758 Pr-‘j4 Ra-0.3205. 

(9) 

(10) 

In both equations, the Nusselt number correlation given in [ 151 is used, which is 
valid for high Prandtl numbers. For Pr 5 I, more appropriate correlations should be 
used. The required mean grid widths predicted are listed in Table III. The 
corresponding node numbers are calculated for prescribed periodicity lengths 
X, =X, = 2.8, and for the N3 values given in Table I. Comparison of the two tables 
leads to the conclusion that the grids used for Cases 2, 3, 13, 14, and 16-18 have 
sufficient spatial resolution. 

TABLE III 

Required Mean Grid Widths and Horizontal Node Numbers Calculated from Eqs. (9) and (16) 

Eq. (9) Eq. (16) 

Ra N3 h Nl=N2 h 

4000 8 0.2809 1 0.3992 
7000 8 0.2348 9 0.3337 
87,300 8 0.1046 29 0.1486 
87,300 16 0.1046 21 0.1486 

381,225 16 0.0652 43 0.0927 
381,225 32 0.0652 30 0.0921 

Note. Nl and N2 are related to h and N3 by NI = N2 = dX,X2Dl(h’N3). 

Nl=N2 

4 
6 

18 
13 
25 
18 
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Another approach to determine more efficient mean grid widths has been 
developed in [2 11. It has been used successfully for direct and large eddy simulations 
(which means simulations including subgrid scale models) of temperature fluctuations 
in liquid metal flows [23] and for determining the mean grid widths necessary for 
direct numerical simulation of convection layers heated internally [24]. This 
approach is based on the subgrid-scale models available in the TURBIT-3 code (see, 
e.g., [4,23]) and on a theoretical method of calculating the coefficient C, of the 
model for the subgrid scale momentum fluxes [7], and C,, for the subgrid-scale heat 
fluxes [21]. The equations of definition are deduced for these proportional factors 
from the conservation equations for subgrid-scale kinetic energy “E’, and temperature 

73 variances, E, = (‘T ), 

(11) 

By -j we denote linear averaging over two neighbouring values in thej direction, ( ) 
indicates time averages, 0’ = (Sj $ii + ai jzij)J Sj ‘tii, ‘E’ is the subgrid-scale kinetic 
energy within the.mesh cell surface ‘F, E, is the dissipation of temperature variances, 
and fiT2 = fl Sj /T. The coefficients “C and ‘C, correct for geometrical 
anisotropies of the grid. They depend on grid parameters only and are of the order of 
one. In both equations, the denominator is proportional to the subgrid-scale 
production, the production due to subgrid-scale buoyancy forces being neglected in 
Eq. (1 l), and the numerator contains the subgrid-scale dissipation written as the 
difference between total dissipation and dissipation resolved directly. So, we look for 
the mean grid width which reduces the numerators of both equations to zero. 

To determine this value we assume the subgrid-scale turbulence, which is only 
associated with high wave numbers, to be independent of boundary conditions, thus 
allowing it to be regarded as locally isotropic. Consequently, all two-point 
correlations of velocities, ‘6 ‘Kw, and of temperatures, ‘TjT(& which appear in 
Eqs. (11) and (12) by multiplying the finite difference formulas, can be calculated by 
the theory of isotropic turbulence on the basis of Kolmogorov’s and Batchelor’s 
energy spectra [ 161. After lengthy analysis one obtains 

c, z 
1 -v&-(1/3)(18/55) h-4’3(~)-“3 012(& 

(uQl/3))“” (18/55)(9/2O)“*f,(&) ’ 

C T2 = 

l/2 -@-(l/3)(9/20) h-4’3(&)-1’3 DR(dx) 
pa”*((9/20) I-( 1/3))“‘f2&) . 

(13) 

(14) 

The new quantities are the Kolmogorov constant a = 1.5 and the Batchelor 
constant /I = 1.3; the four additional functions depending on the grid width Ax - 
contain a larger number of double and triple integrals, some of which can only be 
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evaluated numerically. For an isotropic grid, e.g., we have 012 = 6.73 and 
DT2 = 1.66. Thus, we can determine the mean grid width for an isotropic grid by 
setting the numerators of Eqs. (13) and (14) equal to zero. With the normalization 
used here, and with the constant dissipation approximation given above, this yields 

(15) 

(16) 

h < 5.13 (:)I’” = 5.13 (&)1’4 =: 7.77Pr’/2Ra-0.3205, 

h < 3.45 (;)I” = 3.45 (Ra d, Nu )“’ z 5.23Pr-1/4Ra-0.3205. 

As a result of different coefficients, the left side of Eq. (15) is valid for Pr < 0.59; that 
of Eq. (16) for Pr > 0.59. Because of this very difference in the coefficients, this 
approach seems to be more appropriate than the criteria given in Eqs. (7) and (8), 
because many published large eddy simulations with this molecular Prandtl number 
had to use a turbulent Prandtl number for the subgrid-scale fluxes, Pr,,,, z C,/C,,, 
of about 0.4 to get satisfactory results (an overview is given in [2 1 I). We predict for 
coarse grids and an infinite Rayleigh number Pr,,,, = 0.43 [6]. These values indicate 
that more stringent requirements should exist as a consequence of neglecting the 
subgrid-scale heat fluxes than due to the momentum fluxes. 

The functional dependence of the criteria given in Eqs. (15) and (16) is the same as 
that of the “Kolmogorov criteria” in Eqs. (7)-(10). The coefficients are slightly 
larger, therefore allowing for coarser grids (Table III). The difference between both 
criteria seems to be small, but due to the N4 dependence, the computing time 
necessary is considerably reduced by a factor of 4.2 for Pr = 0.71. Both criteria 
prescribe sufficiently small mean grid widths, because the calculated values are 
considerably lower than the shortest wavelengths of 0.2 observed by Deardorff and 
Willis [ 141 for an even higher Rayleigh number of Ra = 6.3 x 10’. Comparing 
Table I and the results of the criteria in Eq. (16) in Table III shows a highly insuf- 
ficient spatial resolution to be predicted only for Cases 7 and 9, a moderately insuf- 
ficient resolution for Cases 4 and 5. The other cases use grids, which are tine enough. 

With increasing anisotropy of the grids, the values of 012 and DT2 decrease. The 
lowest values calculated for the grids used here are those for the mesh cells adjacent 
to the walls in Case 13, where 012 = 5.0 and DT2 = 1.33. This would decrease by 
22% the mean grid width predicted in Eq. (15) and by 15% that predicted in 
Eq. (16). Thus, in case of highly anisotropic grids, it would be worthwhile to use the 
full theory to calculate 012 and DT2 for every type of mesh cell. 

As examples of such tests of grids, the calculated coefficients C,, for Cases 7-14 
are given in Fig. 3 together with the terms of the kinetic energy equation calculated 
from Case 14. The dissipation profile increases steeply near the wall; it is constant 
and approximately comparable to the production term over about 60-70% of the 
inner part of the channel. There we find sufficient agreement with the renormalized 
data from [ 141, which apply to different Rayleigh and Nusselt numbers. The diffusion 
term is not very accurate in the inner part of the channel; the time interval considered 

581/49/2-6 
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FIG. 3. Calculated terms of the turbulence energy equation for Case 14 and calculated subgrid-scale 
coeffkient; Ra = 38 1,225. 

is too short for accurate time averaged values to be obtained for the convective fluxes 
containing the energy and, especially, the pressure fluctuations, which predominantly 
contain low-wave number fluctuations [ 111. Here we approximate the dissipation 
profile by a constant value, as discussed above. The resultant coefficient, C,, is about 
0.18 in case of very rough grids and infinite Rayleigh number. For Case 7, C,, has 
reduced to less than 50% of this value in the center of the channel, where the grid is 
coarser than in the outer part, where C,, decreases. For Case 9, C,, has reduced to 
25%, and for Cases 12-15, the result calculated is zero. These exact results are seen 
to agree with the isotropic-grid estimates in Eq. (16) as shown in Table III. This also 
holds for the cases with Ra = 87,300, where zero values of C,, have been calculated 
only for the entire channel in Cases 6 and 16. 

4. DISCUSSION ON THE BASIS OF NUMERICAL RESULTS 

4.1. Influence of Periodicity Lengths 

In Section 3.2, we discussed that the shorter periodicity lengths chosen for the 
simulations may be appropriate only for the case with Ra = 4000, the larger one may 
be appropriate up to the highest Rayleigh number under consideration. The 
wavelengths actually calculated with both types of grids are shown in Fig. 2. For 
Ra = 4000, Case 2, we do not find the expected value, but a wavelength 
corresponding to a diagonal arrangement of a vortex pair in the grid. The flow regime 
should be the skewed varicose. The expected wavelength is found, however, for the 
large periodicity-length case, Case 18, and the same Rayleigh number. The 
wavelength corresponds to a system of two vortex rolls with the axis parallel to one 
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of the horizontal coordinates. For Ra = 7000, Case 3, the maximum recordable 
wavelength is found in the flow regime of oscillations. 

The wavelength found for the large periodicity-length case with the same Rayleigh 
number, Case 17, scatters around the experimental data and the theoretical value for 
a diagonal arrangement of a vortex pair in the grid. 

The flow regime really calculated for Ra = 4000, Case 2, as identified by contour 
line plots of the velocity fields indeed is the skewed varicose [3]. This regime was 
predicted to exist also for this Prandtl number [ 131. Usually, the skewed varicose is 
an instability which, in experiments without controlled initial conditions, causes a new 
vortex system with greater wavelengths [ 11. So far, the numerical result agrees with 
the predictions, but within the last half of the problem time, the velocity fields 
calculated show only minor changes and no transition to another regime. The reason 
for this steady-state nature of the skewed varicose may perhaps be found in the 
restrictions to discrete values for A and to special spatial directions for the vortex 
axes. Both restrictions may prevent the instability from growing. This argument could 
also explain the multiplicity of stable states observed in low aspect ratio experiments 
within the Rayleigh number of time-independent convection [25]. 

A confirmation for these arguments can be given by the results of the large 
periodicity-length case with the same Rayleigh number, Case 18. As for all cases 
quasi-random initial conditions are used, both flows have to start with short 
wavelengths with IX 2Ax and have to develop flow regimes with larger wavelengths. 

FIG. 4. The velocity field for Ra = 4000, Case 18, at xj = 0.438 showing the formation of a regular 
vortex roll structure. The maximum velocity vector length VVM is (in chronological order) 0.0029, 
0.0022, 0.18, 0.19, 0.16, and 0.097. The contour line increment A is 0.0025 for t < 3.7, and 0.05 for 
I > 3.7. 
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Whereas the flow formation in Case 2 stops with stationary and regular skewed 
varicose like rolls, the flow formation in Case 17 passes this instability at time t E 44. 
Afterwards, two pairs of regular, two-dimensional, and stationary rolls are formed 
showing the expected wavelength A= 2.8. This flow development can be identified by 
the contour line plots of the velocity fields for different time steps in Fig. 4. These are 
instantaneous horizontal sections through the velocity field near the midplane of the 
channel. We indicate equal negative vertical velocities (. . .) and nonnegative vertical 
velocities (-). The short single lines represent velocity vectors within the plane of 
plotting. 

The flow regime calculated for Ra = 7000, Case 3, can be identified by the velocity 
fields given in Fig. 5. The periodic arrangement of positive and negative vertical 
velocities shows that one pair of rolls has developed in the control volume. Its axis of 
rotation is arranged parallel to the xi axis and is deflected in the x2 direction. The 
place of maximum deflection, which is marked by circles on any contour line, travels 
in the negative x1 direction through the channel causing an oscillation, as was to be 
expected from the stability map. Superimposed to this travelling wave with the period 
ttrans we find an oscillation in the amplitude of deflection with a smaller period ramp,, 
and an oscillation in the propagation velocity of the wave with the same period 7,,p,. 

FIG. 5. Velocity field for Ra = 7000, Case 3, 
oscillations. VVM E 0. IS, A = 0.05. 

at xJ = 0.438 showing the bimodal travelling 
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Obviously, an energy exchange exists between the transport velocity of the wave and 
its amplitude of deflection: The amplitude of deflection is large in time intervals with 
low transport velocity and vice versa. The amplitude oscillates between 0.12 x D and 
0.24 x D. Thus we find a bimodal convection with accelerating and decelerating 
travelling waves and changing curvatures. This is precisely the flow regime observed 
by Krishnamurti [ 171 at moderate Prandtl numbers; following her data and flow 
regime map, this bimodal periodic convection could indeed exist for air at this 
Rayleigh number. 

The calculated flow development for the large periodicity-length case with 
Ra = 7000, Case 17, is shown in Fig. 6. For times below t z 50 the flow regimes are 
dominated by short wavelengths and look similar to those for Case 18. The dominant 
wavelengths increase with time up to t z 180 showing a cross-roll like structure at 
t =: 75 and a diagonal roll structure for t > 110. Later on local discharges of hot or 
cold fluid from the walls cause structures with smaller scales without altering 

FIG. 6. Velocity field for Ra = 7000, Case 17, at x3 = 0.438 showing the formation of turbulent 
convection with irregular vortex roll structures; VVM is about 0.23 and A = 0.0625. 
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considerably the diagonal arrangement of the large scale vortex rolls. The flow is 
irregular, three dimensional, and aperiodic in time; therefore it can be regarded as a 
turbulent flow. This flow, and the bimodal oscillatory flow found for Case 3 are 
really “time-dependent and three dimensional” as they should be found following the 
flow regime map of Krishnamurti [ 171. The sensitivity of the flow regimes against 
periodicity lengths found here is in accordance with the large uncertainties in the flow 
regime bounds and in the knowledge about their dependence on aspect ratio, initial 
conditions, and sidewalls as discussed in [ 11. The numerical results indicate the 
periodicity length or aspect ratio to be a dominant parameter. 

One calculated instantaneous velocity field for Ra = 38 1,225 and for the finest grid 
(Case 14) is shown in Fig. 7. This horizontal section represents a highly irregular 
flow field; and as the flow is also aperiodic in time, one may assume that, in accor- 
dance with the flow regime map of Krishnamurti [ 171, really turbulent convection is 
simulated. The areas with positive vertical velocities form islands completely 
surrounded by areas with negative vertical velocities. This means that irregular cells 
are formed with upward flows within the cells and downward flows on their surfaces. 
Therefore, this may be called cellular turbulent convection. On the other hand, there 
are very narrow areas with negative vertical velocity, but with nearly no horizontal 
velocity, which may be an indication of a convection like a spoke pattern. The results 
found for the corresponding large periodicity-length case, Case 15, are very similar to 
those in Fig. 7 except that the scales have been enlarged by the ratio of the 
periodicity lengths used. Thus, a final conclusion on the real name for the flow 
regime can neither be reached for the numerical results, nor is there any unique 
statement on flow regimes observed experimentally for these parameters [ 10, 181. 

FIG. 7. Velocity field for Ra = 381,225, Case 14, at xj = 0.48 and I = 32.8, showing the cellular 
turbulent convection. VVM = 0.348 and A = 0.0625. 
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For the travelling waves at Ra = 7000, some additional data can be analysed from 
Fig. 5 and from some more plots of this type for other times. The period t,,r, of the 
oscillating amplitude of deflection is about 0.1 f 0.03 in terms of the viscous 
diffusion time D2/v. It agrees quite well with one of the interpolation curves by 
Krishnamurti 1261. The period rtrans of the travelling waves is 0.17 f 0.03. This value 
is somewhat below the second curve by Krishnamurti and also slightly lower than the 
value r = 0.19 observed by Lipps [2]. Since he stated a strong influence of the 
prescribed initial wavelengths or the periodicity lengths, and here shorter periodicity 
lengths are used, the slightly short periods observed may be attributed to the 
periodicity lengths used being too short. 

The calculated Nusselt numbers are compared with empirical correlations in Fig. 8. 
All numerical results from cases with sufficiently small grid widths and short 
periodicity lengths, ’ Cases 2-14, follow the interpolation curve by Busse and 
Whitehead [ 151 quite well. However, this curve holds for Prandtl numbers above 
twenty. The other curves for the Prandtl number of air result in lower Nusselt 
numbers. It has been discussed in [2,3] that more appropriate results could be 
obtained by applying greater periodicity lengths, because it is known from 
experiments, e.g., [ 18,271, and from the overview in [28] that the Nusselt number 
increases with decreasing aspect ratio. Indeed, this dependence can be shown with the 
numerical results of the large periodicity-lengths cases, Cases 15-18. The Nusselt 
numbers calculated from these simulations are smaller than those of the other cases. 
The difference between the results from both types of grids decreases with increasing 
Rayleigh number because the macroscopic length scale 1 also increases whereas a 
fixed value for the periodicity lengths has been used in the simulations. Thus, it is 
consistent that the experimental results by Threlfall [27] come closest to the 
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FIG. 8. Comparison between calculated Nusselt numbers and empirical correlations for air. The 
curve by Busse and Whitehead is for Pr = 20 to 200. 
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numerical results, because these experiments were performed in a cylindrical vessel 
with a comparable aspect ratio. The small deviations remaining may be explained by 
the periodicity lengths being still too small for both large Rayleigh numbers, by the 
shear stresses at the vertical walls missing in the calculations, and by statistical 
errors. 

4.2. Influence of Vertical Grid Width Distribution 

The Nusselt number is the quantity, which should react most sensitively to insuf- 
ficient resolution by the vertical grid widths, as it is directly calculated from the 
temperature profile close to the wall. From Fig. 8, it becomes obvious that, in accor- 
dance with Table II, the result of the roughest grid for Ra = 87,300 (Case 4) is insuf- 
ficient due to the vertical grid width near the wall being too large. The result for the 
next finer grid (Case 5) is below that for the finest grid (Cases 6 and 16), despite a 
vertical resolution also insufficient. The reason for this scattering is the short time 
interval used for time averaging of these results obtained at low Rayleigh 
numbers [3]. The decrease of the Nusselt number from Case 7-12 for the highest 
Rayleigh number cannot be caused by the vertical grid widths, as these cases use 
identical vertical grid with distributions. A systematic change from Case 12-14 
cannot be observed. Thus, all grids used for the highest Rayleigh number seem to 
have a sufficient resolution near the wall. This confirms the predictions in Table II. 

Another sensitive quantity is the temperature profile. The vertical profile given in 
Fig. 9 has been calculated from the time-dependent three-dimensional temperature 
field by averaging over horizontal planes and over finite time intervals; such averages 
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FIG. 9. Vertical time mean temperature and temperature rms-value profiles for Ra = 381,225, 
Case 14. (0), Deardorff and Willis, 1967, Ra = 6.3 x 10’; (El), TURBIT-3, Case 14, Ra = 3.8 X IO’. 
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are denoted by (T). The symbols on the calculated vertical mean temperature profile 
indicate the centers of the nodes used for Case 14. Comparison with the experimental 
data by Deardorff and Willis [ 141 for a slightly higher Rayleigh number makes it 
evident that enough nodes have been used in the conductive sublayer 6 and in the 
following two or three thermal boundary layer thicknesses to resolve adequately the 
steep temperature gradient near the wall and its sharp transition to the isothermal 
core. The slight gradient reversal calculated in the inner half of the channel has also 
been verified, like the time mean temperature profile calculated with the coarser grid 
of Case 9 [3]. 

The vertical grid width distribution of the coarse grid of Case 9 and also that used 
for Ra = 87,300 have been found to be of moderate accuracy for determining the 
position of the maximum of statistical turbulence data like the rms value of 
temperature fluctuations 7” = T - (T) [3]. Figure 9 indicates that this problem can 
be removed, if necessary, by using the finer vertical resolution of grid 14. Enough 
nodes are used here within the first two thermal boundary layer thicknesses to 
adequately describe the physical profile by the volume averaged variables, and also 
profiles of other statistical turbulence data, such as terms of the kinetic energy 
equation in Fig. 3 or pressure terms [ 11, Appendix]. 

4.3. Influence of the Mean Grid Width 

The mean grid width necessary for direct simulation of turbulent convection will be 
investigated by numerical results for the highest Rayleigh number because, for these 
cases, the strongest influence of the neglected subgrid-scale terms can be expected. 

A qualitative test of the mean grid widths used can be performed by comparing, 
e.g., calculated instantaneous isotherm fields. Vertical sections through the 
temperature fields for Cases 7, 9, and 14 are contained in Fig. 10 for arbitrary times 
and locations. Hot thermals can be observed to rise from the lower heated wall, cold 
ones to fall from the upper cooled wall. The field for the roughest grid (Case 7) looks 

FIG. 10. Vertical sections through instantaneous isotherm fields for Case 7 at x, = 0.525, for Case 9 
at x, = 0.2904, and for Case 14 at x2 = 0.2904; Ra = 38 1,225, A = 0.0625. The short lines at the boun- 
daries denote the sizes of mesh cells. 
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angular and not very reasonable. The field for Case 9 uses the same discretization in 
the plane of plotting as that for case 7; nevertheless, the scales and typical forms of 
the structures in this field seem to be more comparable to those with the finest 
discretization. However, when comparing the smallest horizontal scales observed at 
the finest grid to the horizontal grid width of the coarser grids, one must conclude 
that the grid of Case 9 is below or around the limit of total resolution of all small 
scales. The additional comparison of the horizontal grid widths used in Case 9 with 
the scale of the narrow structures in the horizontal section through the velocity field 
calculated on the finest grid in Fig. 7 clearly shows that the horizontal resolution of 
Case 9 is insufficient. This figure also indicates sufficient resolution by the finest grid. 

The calculated Nusselt numbers have been discussed in Sections 4.1 and 4.2 
(Fig. 8). For an unchanged vertical grid width, a decrease was found in the Nusselt 
number from Cases 7-12 which is only accompanied by a decrease of the mean grid 
width. In Fig. 11, the calculated Nusselt numbers and the maximum rms values of the 
vertical velocity and temperature fluctuation profiles are given as a function of the 
vertically averaged mean grid width h= {Ax, Ax,D/N3. The error bars indicated 
are due to time averaging over short time intervals [3]. This figure indeed illustrates 
that the grids of Cases 7 and 9 use too large h-values, as was predicted by the 
“anisotropic-grid criterion” of Eq. (14) or by the “isotropic-grid criterion” of 
Eq. (16). The “Kolmogorov criterion” of Eq. (9) requires too little grid width, 
because Cases 12-14 show no systematic decrease of the Nusselt number with 
decreasing mean grid width. The decrease of the Nusselt number from Case 9 to the 
others is about 7% and in the temperature rms value about 4%. The very weak 
influence of the mean grid width on the rms values and the moderate one on the 
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FIG. 11. Influence of the mean grid width h on the calculated Nusselt number and maximum rms 
values of vertical velocity and temperature fluctuations for Ra = 381,225. 
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Nusselt number are the strongest influences to be detected from all calculated 
statistical data. 

Energy spectra calculated from the spatial distribution of temperature fluctuations 
for Cases 9 and 14 are compared in Fig. 12. The energy of temperature variances 
E,, = (T’*) is spread over 2.6 orders of magnitude on the grid of Case 9 and over 
5.4 orders of magnitude on the grid of Case 14. The energy associated with the 
highest recordable wave number of Case 9 agrees quite well with the corresponding 
value of Case 14. The energy contribution above this limiting value is much less than 
1%. This small value, which is not recorded by Case 9, nevertheless is of great impor- 
tance. It causes inequality between turbulence production, which is totally resolved 
because it is mainly at low wave numbers, and turbulence dissipation, which is only 
partly resolved by the grid because it is at high wave numbers. As a result, the model 
predicts larger turbulence quantities, including turbulent heat fluxes, in case of insuf- 
ficient spatial resolution (Fig. 11). 

There is some discussion in the literature on the question whether the spectra for 
turbulent convection are continuous or whether there exist discrete peaks at discrete 
wave numbers [ 14, 191. Both types of spectra have been observed in experiments. 
Here we calculate for all turbulent flows spectra decreasing continuously without any 
discrete peaks (Fig. 12). The same type of spectra have also been predicted for a 
similar problem of turbulent convection in a horizontal fluid layer with internal heat 
sources 1241. The type of spectra determined will strongly depend on the evaluation 
procedure applied. In experiments, measurements are often performed with moving 
probes along horizontal lines, or even measurements at single points. One- 
dimensional energy spectra deduced from such data must record very long time 
intervals to be accurate, because the time scales are very large and there are gross 
scale structures more or less fixed spatially, especially in experiments with low aspect 
ratios. When evaluating simulation results one can avoid this problem by calculating 
spectra from all data within a plane parallel to the walls, e.g., the data along the N2 
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FIG. 12. Energy spectra of temperature fluctuations for Cases 9 and 14 calculated at x3 z 0.04. 
Here q is determined from the local value of the dissipation profile given in Fig. 3. The maximum recor- 
dable wave number is K, max = n/Ax,. 
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lines in the xi direction. These results in addition are averaged over time by 
evaluating the simulation results at eight Eulerian time steps for Cases 9 and 31 for 
Case 14. Thus, due to the ergodic theorem, it may be expected that continuous 
spectra should also be obtained by long-time averaging of experimental data. 

Some evidence of the reliability of the calculated continuous spectra may be found 
by investigating the slopes in these spectra. The slopes and transition points obser- 
vable in both spectra agree roughly (Fig. 12). There is an indication of a -1 slope 
corresponding to the von Karman spectrum for the low-wave number range near the 
walls where the production predominates (for available theories and data on spectra, 
see, e.g., [ 161). In accordance with the results in [ 141 an inertial subrange with -5/3 
slope cannot be observed; obviously, the Rayleigh number is too low to separate the 
dissipation range considerably from the production range. The maximum in the 
dissipation spectrum for temperature variances ET(k) = 2ak*E,,(k) corresponds to a 
-2 slope in the E,, p s ectrum. This slope is passed in the range of wave numbers of 
0.1/v < K, 5 0.2/q. A result not really expected is the existence of a -3 slope; 
usually this is found in the inertial diffuse subrange for fluids with low Prandtl 
numbers. At high wave numbers around l/n we find a slope steeper than or equal to 
-7, as was to be expected. This is analogous to the Heisenberg spectrum for the 
kinetic energy. Further spectra for the variables ui, p, T, E calculated for Case 14 at 
this position and others in the channel are shown and discussed in ] 111. 

Detailed results for the Rayleigh number Ra = 87,300 are described in ]3]. No 
systematic influence of the mean grid width has been found in any of the calculated 
data. Thus, the main result of this paragraph is that the anisotropic-grid criterion of 
Eq. (14) and also the isotropic-grid criterion in Eq. (16) together with the DT2 value 
for the nonuniform mesh really predict efficient and sufficient mean grid widths. 

5. CONCLUSIONS 

Three criteria have been formulated and tested, which allow for the selection of 
grids adequate for direct numerical simulation: 

Criterion (i) requires great periodicity lengths in the horizontal directions to record 
the longest wavelengths observed. The grids with short periodicity lengths exactly 
meet this criterion at the lowest Rayleigh number. Nevertheless, the skewed varicose 
instability found by starting from random initial conditions cannot develop the 
expected wavelength because of the wavelength restrictions by the grid. The periods 
of the bimodal travelling waves observed at the next higher Rayleigh number are also 
slightly too short. The simulations with large periodicity lengths show none of these 
deficiencies. Thus, for simulation in the transition range, one should use periodicity 
lengths about two times the expected values. For turbulent flows, the insufficiently 
large periodicity lengths used cause the Nusselt number to be 3-5% above 
experimental values. This tendency is shown to be due to the analogous influence of 
the aspect ratio observed in experiments. For more accurate results, one should use 
greater periodicity lengths with about two times the expected wavelength. For the 
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highest Rayleigh number considered here Xi z I is used. In order to decrease the 
3-5% deviation we should have used node numbers and CPU times a factor of 4 
higher. 

Criterion (ii) requires a tine resolution of the region near the wall due to the linear 
wall approximations introduced. The grids applied to simulations of turbulent 
convection use between 1 and 5 nodes within the thermal boundary layer thickness 6. 
It must be concluded from the numerical results that the calculated Nusselt number 
reacts sensitively to increasing the node number from 1 to 3 within 6. Further 
increases have no significant influence on the accuracy of the numerical results. Thus, 
for Pr 2 1, it is sufficient to use about three nodes in the vertical direction within the 
thermal boundary layer thickness. If it is the purpose of a simulation to investigate 
statistical data of turbulence, about the same number of nodes should also be used 
within each of the next two thermal boundary layer thicknesses to record adequately 
the sharp peaks or transitions in many statistical data of turbulence in this range. For 
Prandtl numbers considerably below unity, one must consider the viscous sublayer 
thickness instead of the thermal boundary layer thickness. 

Criterion (iii) in general requires very fine grids to resolve the smallest scales of 
turbulence, because the subgrid-scale terms have been neglected. The numerical 
simulations performed at the highest Rayleigh number show only small deficiencies in 
case of grids which are too coarse. For these coarse grids, the Nusselt number and 
the rms values of velocity and temperature fluctuations, which have been found to be 
the most sensitive results, both increase only slightly with decreasing node number. 
The three finest grids sufficiently resolve the smallest scales of turbulence. The 
“Kolmogorov criteria” of Eqs. (7) and (8) prescribe very low values for the required 
mean grid widths. The “isotropic-grid criteria” of Eqs. (15) and (16) predict larger 
required grid widths, which allows for more efficient simulation of comparable 
accuracy than the “Kolmogorov criteria.” The advantage of this method is that it 
may also be applied in its complete form of Eqs. (13) and (14) to test highly 
anisotropic grids in advance of numerical simulations. 

The three criteria tested here with Benard convection may also be applied to other 
types of flows, because information specific to the type of flow is only used as 
empirical or estimated input data. The criteria have also been verified against the 
simulations of internally heated convection layers [24]. A linear dissipation profile 
was formulated for the prediction of the mean grid width distribution. The validity of 
criterion (iii) has also been proven by direct and large eddy simulations of channel 
flow of liquid metals [23]. A mixing length approach for the dissipation profile was 
used in that case to calculate the coefficient C,, of the subgrid-scale heat flux model. 
Thus, these criteria increase the chance for the method of direct numerical simulation 
to be capable of predictions for any type of laminar and turbulent flow. 
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